Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 19649-19657, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363510

RESUMO

The uptake, translocation, and metabolization of four widely used drugs, amitriptyline, orphenadrine, lidocaine, and tramadol, were investigated in a laboratory study. Cress (Lepidium sativum L.) and pea (Pisum sativum L.) were employed as model plants. These plants were grown in tap water containing the selected pharmaceuticals at concentrations ranging from 0.010 to 10 mg L-1, whereby the latter concentration was employed for the (tentative) identification of drug-related metabolites formed within the plant. Thereby, mainly phase I metabolites were detected. Time-resolved uptake studies, with sampling after 1, 2, 4, 8, and 16 days, revealed that all four pharmaceuticals were taken up by the roots and further relocated to plant stem and leaves. Also in these studies, the corresponding phase I metabolites could be detected, and their translocation from root to stem (pea only) and finally leaves could be investigated.


Assuntos
Brassicaceae , Tramadol , Amitriptilina/metabolismo , Ervilhas , Orfenadrina/metabolismo , Lidocaína/metabolismo , Plantas/metabolismo , Verduras , Preparações Farmacêuticas/metabolismo , Raízes de Plantas/metabolismo
2.
Electrophoresis ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946621

RESUMO

In this study, we investigated the uptake and metabolization of four drugs (plus the associated prodrugs) from the sartan family by eight edible plants. Growing the plants hydroponically in a medium containing the respective drug, more than 40 phases I and II metabolites derived from the four sartan drugs could be tentatively identified. To demonstrate the suitability of the proposed analytical approach for actual environmental samples, garden cress (Lepidium sativum) selected as a model plant was grown in water drawn from the effluent of two local wastewater treatment plants. Thereby, three of the sartans, namely, olmesartan, candesartan, and valsartan, could be found in the plant extracts at concentrations of 3.1, 10.4, and 14.4 ng g-1 , respectively. Additionally, for candesartan and valsartan, a glycosylated transformation product could be detected. In order to extend the present (targeted) workflow also toward the analysis of unknown transformation products (i.e., those not listed in the custom-made database used for this research), a nontargeted approach for the analysis of plant extracts with respect to the presence of drug-related metabolites was developed. Comparison of the targeted and the nontargeted workflows led to the finding of two additional, so far unidentified, transformation products originating from azilsartan.

3.
Biomedicines ; 10(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35327409

RESUMO

Systemic sclerosis (SSc) is a rare systemic autoimmune disorder marked by high morbidity and increased risk of mortality. Our study aimed to analyze metabolomic profiles of plasma from SSc patients by using targeted and untargeted metabolomics approaches. Furthermore, we aimed to detect biochemical mechanisms relevant to the pathophysiology of SSc. Experiments were performed using high-performance liquid chromatography coupled to mass spectrometry technology. The investigation of plasma samples from SSc patients (n = 52) compared to a control group (n = 48) allowed us to identify four different dysfunctional metabolic mechanisms, which can be assigned to the kynurenine pathway, the urea cycle, lipid metabolism, and the gut microbiome. These significantly altered metabolic pathways are associated with inflammation, vascular damage, fibrosis, and gut dysbiosis and might be relevant for the pathophysiology of SSc. Further studies are needed to explore the role of these metabolomic networks as possible therapeutic targets of SSc.

4.
Talanta ; 236: 122849, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635239

RESUMO

Lipidomics has great potential for the discovery of biomarkers, elucidation of metabolic processes and identifying dysregulations in complex biological systems. Concerning biofluids like plasma or cerebrospinal fluid, several studies for the comparison of lipid extraction solvents have already been conducted. With respect to tissues, which can differ significantly in terms of dry matter content and composition, only few studies are available. The proper selection of an extraction method that covers the complexity and individuality of different tissues is challenging. The goal of this work was to provide a systematic overview on the potential of different extraction methods for a broad applicability. This study covers six different extraction procedures and four different reconstitution solvents applied to ten different porcine tissues. To get an overview of the individual lipid profiles, a workflow was developed for a fast and reliable tentative lipid annotation. Therefore, several machine learning tools were utilized, like the prediction of collision cross sections to support the tentative lipid identification in case of untargeted lipidomics. In terms of data evaluation, unsupervised (e.g. principal component analysis) and supervised (e.g. partial least square - discriminant analysis) methods were applied to visualize and subsequently interpret all generated information. Furthermore, the influence of the tissue composition on the extraction performance was investigated. It could be shown that the ten porcine tissues can be distinguished based on their lipid profile with the applied workflow and that the methyl-tert-butyl ether (MTBE) based extraction method (two-phase) showed the best overall performance for the 16 examined lipid species. With this method the highest number of features (428 in lung tissue) could be annotated. Upcoming one-phase extractions also showed a high potential concerning total number of extracted lipids. Methanol/MTBE/chloroform (MMC) extracted slightly less lipids (393 in lung and liver) than MTBE but turned out to be the best one-phase extraction method. Additionally, the numbers of extracted lipids obtained by isopropanol/water 90:10 (IPA90) (399 in stomach) and by isopropanol/methanol/chloroform (IMC) (395 in stomach) were similar to those of the modified Folch method (402 in stomach). One-phase extractions can therefore clearly be seen as preferable when a high throughput is needed.


Assuntos
Lipidômica , Lipídeos , Animais , Espectrometria de Massas , Solventes , Suínos , Fluxo de Trabalho
5.
Pharmaceutics ; 13(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34959422

RESUMO

Successful drug administration to the central nervous system requires accurate adjustment of the drugs' molecular properties. Therefore, structure-derived descriptors of potential brain therapeutic agents are essential for an early evaluation of pharmacokinetics during drug development. The collision cross section (CCS) of molecules was recently introduced as a novel measurable parameter to describe blood-brain barrier (BBB) permeation. This descriptor combines molecular information about mass, structure, volume, branching and flexibility. As these chemical properties are known to influence cerebral pharmacokinetics, CCS determination of new drug candidates may provide important additional spatial information to support existing models of BBB penetration of drugs. Besides measuring CCS, calculation is also possible; but however, the reliability of computed CCS values for an evaluation of BBB permeation has not yet been fully investigated. In this work, prediction tools based on machine learning were used to compute CCS values of a large number of compounds listed in drug libraries as negative or positive with respect to brain penetration (BBB+ and BBB- compounds). Statistical evaluation of computed CCS and several other descriptors could prove the high value of CCS. Further, CCS-deduced maximum molecular size of BBB+ drugs matched the dimensions of BBB pores. A threshold for transcellular penetration and possible permeation through pore-like openings of cellular tight-junctions is suggested. In sum, CCS evaluation with modern in silico tools shows high potential for its use in the drug development process.

6.
Environ Sci Pollut Res Int ; 28(36): 50790-50798, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33973117

RESUMO

In the present study, the uptake and metabolization of the sartan drug telmisartan by a series of plants was investigated. Thereby for seven potential metabolites, modifications on the telmisartan molecule such as hydroxylation and/or glycosylation could be tentatively identified. For two additional signals detected at accurate masses m/z 777.3107 and m/z 793.3096, no suggestions for molecular formulas could be made. Further investigations employing garden cress (Lepidium sativum) as a model plant were conducted. This was done in order to develop an analytical method allowing the detection of these substances also under environmentally relevant conditions. For this reason, the knowledge achieved from treatment of the plants with rather high concentrations of the parent drug (10 mg L-1) was compared with results obtained when using solutions containing telmisartan in the µg - ng L-1 range. Thereby the parent drug and up to three tentative drug-related metabolites could still be detected. Finally cress was cultivated in water taken from a local waste water treatment plant effluent containing 90 ng L-1 of telmisartan and harvested and the cress roots were extracted. In this extract, next to the parent drug one major metabolite, namely telmisartan-glucose could be identified.


Assuntos
Brassicaceae , Lepidium sativum , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Esgotos , Telmisartan
7.
Environ Sci Pollut Res Int ; 28(42): 59382-59390, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33206294

RESUMO

The aim of this study was to investigate the uptake of four beta-blockers by the model plant Lepidium sativum (garden cress) and their possible metabolization over a time period of 8 days. Therefore, cress was grown hydroponically in tap water for a week until they were matured, following irrigation with drug-containing water over the course of another 8 days. Samples were taken at days 1, 2, 4, and 8 after irrigation started. All four beta-blockers were taken up by the plants and the different octanol-water coefficients (log P) of the drugs have an influence on the uptake speed in the roots of the plants. The log P seems to have no influence on the translocation of the drugs from the root to the shoots. Furthermore, neither phase I nor phase II metabolization occurred inside the plants.


Assuntos
Brassicaceae , Lepidium sativum , Estudos de Tempo e Movimento
8.
Electrophoresis ; 42(4): 482-489, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33274757

RESUMO

The (tentative) identification of unknown drug-related phase II metabolites in plants upon drug uptake remains a challenging task despite improved analytical instrument performance. To broaden the knowledge of possible drug metabolization, a fast-screening approach for the tentative identification of drug-related phase II metabolites is presented in this work. Therefore, an in silico database for the three non-steroidal anti-inflammatory drugs (ketoprofen, mefenamic acid, and naproxen) and a sub-group of their theoretical phase II metabolites (based on combinations with glucose, glucuronic acid, and malonic acid) was created. Next, the theoretical exact masses (protonated species and ammonia adducts) were calculated and used as precursor ions in an autoMS/MS measurement method. The applicability of this workflow was tested on the example of eleven edible plants, which were hydroponically grown in solutions containing the respective drug at a concentration level of 20 mg/L. For the three drugs investigated this led to the tentative identification of 41 metabolites (some of them so far not described in this context), such as combinations of hydroxylated mefenamic acid with up to four glucose units or hydroxylated mefenamic acid with two glucose and three malonic acid units.


Assuntos
Anti-Inflamatórios não Esteroides , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Plantas Comestíveis , Poluentes Químicos da Água , Irrigação Agrícola , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Hidroponia , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
9.
Anal Bioanal Chem ; 412(8): 1817-1824, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31965248

RESUMO

Investigations into the interaction of xenobiotics with plants (and in particular edible plants) have gained substantial interest, as water scarcity due to climate-change-related droughts requires the more frequent use of reclaimed wastewaters for irrigation in agriculture. Non-steroidal anti-inflammatory drugs are common contaminants found in wastewater treatment plant effluents. For this reason, the interaction of nine edible plants with diclofenac (DCF), a widely used representative of this group of drugs, was investigated. For this purpose, plants were hydroponically grown in a medium containing DCF. For the detection of unknown DCF-related metabolites formed in the plant upon uptake of the parent drug' a new workflow based on the use of HPLC coupled to drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry (DTIM QTOF-MS) was developed. Thereby' for chromatographic peaks eluting from the HPLC, drift times were recorded, and analytes were subsequently fragmented in the DTIM QTOF-MS to provide significant fragments. All information available (retention times, drift times, fragment spectra, accurate mass) was finally combined' allowing the suggestion of molecular formulas for 30 DCF-related metabolites formed in the plant, whereby 23 of them were not yet known from the literature.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Preparações Farmacêuticas/metabolismo , Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Germinação
10.
J Chromatogr A ; 1613: 460673, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31708220

RESUMO

The uptake, translocation and transformation of three UV-blockers commonly employed in sunscreens, namely avobenzone, octocrylene and octisalate from water by Lemna gibba and Cyperus alternifolius was investigated. Reversed phase high performance liquid chromatography coupled to drift-tube ion-mobility quadrupole time-of-flight mass spectrometry was used for analyzing the extracts from the selected plants after incubation with the UV-blockers for one week. For avobenzone several transformation products resulting from hydroxylation, demethylation and oxidation of the parent molecule could be identified by measuring accurate mass, performing MS/MS experiments and by determining their drift-tube collision cross sections employing nitrogen as drift gas. In addition, the plants were subjected to two commercially available sunscreens, providing similar results to those obtained for the standard solutions of the UV-blockers. Finally, a kinetic study on the uptake and transformation of avobenzone, octocrylene and octisalate was conducted over a period of 216 h, revealing that the UV-filters were mostly present in their parent form and only to a smaller part converted into transformation products.


Assuntos
Araceae/metabolismo , Cromatografia Líquida de Alta Pressão , Cyperus/metabolismo , Protetores Solares/farmacocinética , Espectrometria de Massas em Tandem , Acrilatos/farmacocinética , Biotransformação , Espectrometria de Mobilidade Iônica , Propiofenonas/farmacocinética , Salicilatos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...